- estables
- inestables
- caóticos (Caos determinista)
Un sistema estable tiende, según transcurre el tiempo, a un punto u órbita, según su dimensión (atractor). Un sistema inestable se escapa de los atractores, y un sistema caótico manifiesta los dos comportamientos. Por un lado, existe un atractor por el cual el sistema se ve atraído, pero a la vez, hay "fuerzas" que lo alejan de éste. De esa manera, el sistema permanece confinado en una zona de su espacio de estados, pero sin tender a un atractor fijo.
Una de las mayores características de un sistema inestable es que tiene una gran dependencia de las condiciones iniciales. De un sistema del que se conocen sus ecuaciones características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distinta. Ejemplos de tales sistemas incluyen la atmósfera terrestre, el Sistema Solar, las placas tectónicas, los fluidos en régimen turbulento y los crecimientos de población.
Por ejemplo, el tiempo atmosférico, según describió Edward Lorenz, se describe por 3 ecuaciones diferenciales bien definidas. Siendo así, conociendo las condiciones iniciales se podría conocer la predicción del tiempo en el futuro. Sin embargo, al ser éste un sistema caótico, y no poder conocer nunca con exactitud los parámetros que fijan las condiciones iniciales (en cualquier sistema de medición, por definición, siempre se comete un error, por pequeño que éste sea) hace que aunque se conozca el modelo, éste diverja de la realidad pasado un cierto tiempo. Por otra parte, el modelo atmosférico es teórico y puede no ser perfecto, y el determinismo, en el que se basa, es también teórico.
Para poder clasificar el comportamiento de un sistema como caótico, el sistema debe tener las siguientes propiedades:
debe ser sensible a las condiciones iniciales
debe ser transitivo
sus órbitas periódicas deben ser densas
Sensibilidad a las condiciones iniciales significa que dos puntos en tal sistema pueden moverse en trayectorias muy diferentes en su espacio de fase incluso si la diferencia en sus configuraciones iniciales son muy pequeñas. El sistema se comportaría de manera idéntica sólo si sus configuraciones iniciales fueran exactamente las mismas. Un ejemplo de tal sensibilidad es el así llamado "efecto mariposa", en donde el aleteo de las alas de una mariposa puede crear delicados cambios en la atmósfera, los cuales durante el curso del tiempo podrían modificarse hasta hacer que ocurra algo tan dramático como un tornado. La mariposa aleteando sus alas representa un pequeño cambio en las condiciones iniciales del sistema, el cual causa una cadena de eventos que lleva a fenómenos a gran escala como tornados. Si la mariposa no hubiera agitado sus alas, la trayectoria del sistema hubiera podido ser muy distinta.
La sensibilidad a las condiciones iniciales está relacionada con el exponente Lyapunov. El exponente Lyapunov es una cantidad que caracteriza el radio de separación de trayectorias infinitesimalmente cercanas.
Transitividad significa que la aplicación de las transformaciones de cualquier intervalo dado I1 se expanden hasta que se superpone con otro intervalo dado I2, o equivalentemente que hay condiciones iniciales cuyas órbitas son densas.
Una manera de visualizar el movimiento caótico, o cualquier tipo de movimiento, es hacer un diagrama de fases del movimiento. En tal diagrama el tiempo es implícito y cada eje representa una dimensión del estado. Por ejemplo, un sistema en reposo será dibujado como un punto, y un sistema en movimiento periódico será dibujado como un círculo.
Algunas veces el movimiento representado con estos diagramas de fases no muestra una trayectoria bien definida, sino que ésta se encuentra errada alrededor de algún movimiento bien definido. Cuando esto sucede se dice que el sistema es atraído hacia un tipo de movimiento, es decir, que hay un atractor.
De acuerdo a la forma que sus trayectorias evolucionen, los atractores pueden ser clasificados como periódicos, cuasi-periódicos y extraños. Estos nombres se relacionan exactamente con el tipo de movimiento que provocan en los sistemas. Un atractor periódico, por ejemplo, puede guiar el movimiento de un péndulo en oscilaciones periódicas; sin embargo, el péndulo seguirá trayectorias erráticas alrededor de estas oscilaciones debidas a otros factores menores.
Atractores extraños
La mayoría de los tipos de movimientos mencionados en la teoria anterior sucede alrededor de atractores muy simples, tales como puntos y curvas circulares llamadas ciclos limitados. En cambio, el movimiento caótico está ligado a lo que se conoce como atractores extraños, atractores que pueden llegar a tener una enorme complejidad como, por ejemplo, el modelo tridimensional del sistema climático de Lorenz, que lleva al famoso atractor de Lorenz. El atractor de Lorenz es, quizá, uno de los diagramas de sistemas caóticos más conocidos, no sólo porque fue uno de los primeros, sino también porque es uno de los más complejos y peculiares, pues desenvuelve una forma muy peculiar más bien parecida a las alas de una mariposa.
Los atractores extraños están presentes tanto en los sistemas continuos dinámicos (tales como el sistema de Lorenz) como en algunos sistemas discretos (por ejemplo el mapa Hènon). Otros sistemas dinámicos discretos tienen una estructura repelente de tipo Conjunto de Julia la cual se forma en el límite entre las cuencas de dos puntos de atracción fijos. Julia puede ser sin embargo un atractor extraño. Ambos, atractores extraños y atractores tipo Conjunto de Julia, tienen típicamente una estructura fractal.
El teorema de Poincaré-Bendixson muestra que un atractor extraño sólo puede presentarse como un sistema continuo dinámico si tiene tres o más dimensiones. Sin embargo, tal restricción no se aplica a los sistemas discretos, los cuales pueden exhibir atractores extraños en sistemas de dos o incluso una dimensión.
Los Sistemas dinámicos y teoría del caos son una rama de las Matemáticas, desarrollada en la segunda mitad del Siglo XX, que estudia lo complicado, lo impredecible, lo que no es lineal. A veces se la llama "Matemática de lo no lineal".
Para los no iniciados en matemáticas, el nombre "Teoría del Caos" puede inducir a error por dos motivos:
No necesariamente es una teoría sino que puede entenderse como un gran campo de investigación abierto, que abarca diferentes líneas de pensamiento.
Caos está entendido no como ausencia de orden, sino como cierto tipo de orden de características impredecibles, pero descriptibles en forma concreta y precisa. Es decir: un tipo de orden de movimiento impredecible.
La idea de la que parte la Teoría del Caos es simple: en determinados sistemas naturales, pequeños cambios en las condiciones iniciales conducen a enormes discrepancias en los resultados. Este principio suele llamarse efecto mariposa debido a que, en meteorología, la naturaleza no lineal de la atmósfera ha hecho afirmar a muchos científicos que es posible que el aleteo de una mariposa en determinado lugar y momento, pueda ser la causa de un terrible huracán varios meses más tarde en la otra punta del globo.
Un ejemplo claro sobre el efecto mariposa es soltar una pelota justo sobre la arista del tejado de una casa varias veces; pequeñas desviaciones en la posición inicial pueden hacer que la pelota caiga por uno de los lados del tejado o por el otro, conduciendo a trayectorias de caída y posiciones de reposo final completamente diferentes. Cambios minúsculos que conducen a resultados totalmente divergentes.
En este esquema se suele hablar del concepto de Atractores Extraños: trayectorias en el espacio de fases hacia las que suelen tienden todas las trayectorias normales. En el caso de un péndulo oscilante, el atractor sería el punto de equilibrio central.
Los atractores extraños suelen tener formas geométricas caprichosas y, en muchos casos, parecidos o similitudes a diferentes escalas. En este caso, a estas formas que son iguales a sí mismas en diferentes escalas, se les ha dado en llamar fractales.
La llamada Teoría del Caos es un nuevo paradigma matemático, tan amplio y tan importante como pudo ser en su época la unión entre geometría y cálculo, surgida del pensamiento cartesiano aunque, quizás, por su inmadurez aún no se tenga claro todo lo que puede dar de sí esta nueva forma de pensamiento matemático, que abarca campos de aplicación tan dispares como la medicina, la geología o la economía.
La teoría no tiene un solo padre fundador, sino muchos. Entre ellos destacan Lorenz (meteorólogo), Benoit Mandelbrot (ingeniero de comunicaciones), Mitchell Feigenbaum (matemático), Libchaber (físico), Winfree (biólogo), Mandell (psiquiatra), y otros muchos, la mayoría de ellos vivos actualmente.
Aplicaciones y atractores
La Teoría del Caos y la matemática caótica resultaron ser una herramienta con aplicaciones a muchos campos de la ciencia y la tecnología. Gracias a estas aplicaciones el nombre se torna paradójico, dado que muchas de las prácticas que se realizan con la matemática caótica tienen resultados concretos porque los sistemas que se estudian están basados estrictamente con leyes deterministas aplicadas a sistemas dinámicos. Por esta razón la Teoría del Caos ya no es en sí una teoría: tiene postulados, fórmulas y parámetros recientemente establecidos con aplicaciones, por ejemplo, en las áreas de la meteorología o la física cuántica.
Teoría del caos, aplicación meteorológica
El clima, además de ser un sistema dinámico, es muy sensible a los cambios en las variables iniciales, es un sistema transitivo y también sus órbitas periódicas son densas, lo que hace del clima un sistema apropiado para trabajarlo con matemática caótica. La precisión de las predicciones meteorológicas es relativa, y los porcentajes anunciados tienen poco significado sin una descripción detallada de los criterios empleados para juzgar la exactitud de una predicción.
Al final del siglo XX se ha vuelto común atribuirles una precisión de entre 80 y 85% en plazos de un día. Los modelos numéricos estudiados en la teoría del caos han introducido considerables mejoras en la exactitud de las previsiones meteorológicas en comparación con las predicciones anteriores, realizadas por medio de métodos subjetivos, en especial para periodos superiores a un día. En estos días es posible demostrar la confiabilidad de las predicciones específicas para periodos de hasta cinco días gracias a la densidad entre las orbitas periódicas del sistema, y se han logrado algunos éxitos en la predicción de variaciones anormales de la temperatura y la pluviosidad para periodos de hasta 30 días. No es posible contradecir la confiabilidad de las previsiones para periodos de tiempo más largos debido a que no se han adoptado aún modelos de verificación; no obstante, los meteorólogos profesionales tienden a ponerla en duda.
Los atractores extraños son curvas del espacio de las fases que describen la trayectoria de un sistema en movimiento caótico. Un sistema de estas características es plenamente impredecible, saber la configuración del sistema en un momento dado no permite predecir con veracidad su configuración en un momento posterior. De todos modos, el movimiento no es completamente aleatorio.
En la mayoría de sistemas dinámicos se encuentran elementos que permiten un tipo de movimiento repetitivo y, a veces, geométricamente establecido. Los atractores son los encargados de que las variables que inician en un punto de partida mantengan una trayectoria establecida, y lo que no se puede establecer de una manera precisa son las oscilaciones que las variables puedan tener al recorrer las órbitas que puedan llegar a establecer los atractores. Por ejemplo, es posible ver y de cierta manera prever la trayectoria de un satélite alrededor de la Tierra; lo que aparece en este caso como algo indeterminado, son los movimientos e inconvenientes varios que se le pueden presentar al objeto para efectuar este recorrido.
- http://antroposmoderno.com/antro-articulo.php?id_articulo=152
- http://www.geofisica.cl/English/pics5/FUM3.htm
Estudiantes de Física
Universidad de Santiago de Chile.
13 comentarios:
Bueno... que puede decir de la teoria del caos... bastante buena tu descripcion. Es bueno que algunos nos interecemos en temas poco comunes como este. es cierto que esta teoria es aceptable, pero segue siendo una teoria, aunque mi perecer... es lo mas cercano a la verdad.
espero seguir leyendo temas como este, esta la proxima
copion que sabes tu si con eso de copiar pegar del wikipedia hahaha
nah se te felicita y ojalá, como yo, te intereses en la teoría del caos, la incertidumbre, la matemática filosófica y el fenómeno fractal...
muchos saludos amigo y pasee por mi blog cuando pueda.
bai bai
hola lokillo
que puedo decir
creo que tu tb tienes un caos en tu cabeza jajaja
ya pasaba a saludar
pasa por mi blog
nos vemos
bye bye
Hola. Me dejaste un comentario en tu blog y como me dijsite me he pasado por aquí para ver el tuyo. Tu blog es muy jovencico, ¿eh?
¡Qué casualidad! Yo también estudié física, pero me la dejé a los dos años.
Sólo por curiosidad, ¿cómo llegaste a mi blog?
hola
en pocas palabras creo que es un gran
tema me podrias hablar de el en persona
lo encuentro muy interesante
igual me hubiese gustado o talvez yo soy muy volada pero algo con palabras mas sencillas
por eso prefiero una buena conversa
pero igual te qedo entero xido
ya lokillo
cariños
xaau
=O
te fuiste en la volaaaa...
jajaja...
excelente tema compare... podrías crear el juego de cartas de la teoría del caos xD
jajaja...
ia compare... muy bueno el tema...
paburo ¬¬!
bueno...
qué puedo decir?
mmm...
mira, te conozco igual hace harto tiempo, mmm...casi 7 años...pero aún así ni apenas hablamos...está buena la foto...
y de lo que te conozco me caes muy bien...súper simpático y mmm...
no sé qué más escribir!
mucha suerte en todo!
que estés muy, pero muy bien...
xalupa!
Hola
el tema es sumamente interesante
esta muy bien hecho, ya que tiene las explicaciones en el caso en que la persona que lo lea, lo pueda comprender mejor; me llamo la atención el aleteo de la mariposa, creo q es el mejor insecto que existe, y la simple forma de aletear que poseen, pero más allá de eso, a mi en lo personal, me gustan porque son seres libres.
cuidate y al igual que Darío, espero ver otros temas así
Bueno.. es un tema complejo.. pero no deja de ser interesante... por lo menos para las personas que nos gusta el universo y la fisica...
es cierto muchas veces pensamos muy diferente... pero creo que podemos llegar a tener muy buenas conversaciones .. si nos decimos nuestras opiniones con respeto...
siempre es un agrado conversar con usted!!
siga publicando temas tan interesantes
Adiosin!!
Hola, muy buena la descripcion del tema, pero como siempre se ha dicho, la naturaleza es muy sabia. Ojala estos temas se presentaran en television, pero bueno, la tv en chile es algo tan precario en torno a cultura que no le podemos pedir mas. Que estes bien y visita mi blog, bye.
mmmmmm
la verdad no lei todo, pero prometo que lo haré en otra ocasión, ahora sólo paso para que me tengas y también me bloguees...
igual es muy interesante el tema... asi que lo leere apenas pueda
besito
chau!
ola po
socio
oe ta weno
el blog.
ya po socio
nos tamos viiendo.
a
d
i
o
s
Muy bueno el artículo sobre la teorí del cos, sigue así...
Publicar un comentario